Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Indian J Med Microbiol ; 2013 Oct-Dec; 31(4): 395-400
Article in English | IMSEAR | ID: sea-156824

ABSTRACT

The aim of this study was to explore baseline data, laboratory and molecular analyses to determine if any could serve as potential prognostic marker(s) for treatment response to second line tuberculosis regimens. Of a total number of 50 multi-drug resistant tuberculosis (MDR-TB) patients starting second-line drug MDR-TB treatment in Iraq, only 21 showed treatment adherence and thus, included in this study. Response to treatment was monitored for 11 months by sputum microscopy and culture. We explored baseline data, laboratory and molecular analyses to determine if any could serve as potential prognostic marker(s) for treatment response. Highly signifi cant association (P = 0.019) was detected between mutations in katG315 codon and good response to second-line anti-TB drugs. Spoligotyping and mycobacterial interspersed repetitive unit variable number tandem repeat confi rmed that katG315-mutatnt isolates were genotypically unrelated. The katG315 mutation is a potential prognostic marker for treatment response to second-line anti-tuberculosis drugs. One possible explanation of our results is that the katG315-mutants are sensitive to bacterial killing by “oxidative killing.”

2.
Mem. Inst. Oswaldo Cruz ; 104(5): 710-714, Aug. 2009. ilus
Article in English | LILACS | ID: lil-528078

ABSTRACT

Mutations in the katG gene have been identified and correlated with isoniazid (INH) resistance in Mycobacterium tuberculosis isolates. The mutation AGC→ACC (Ser→Thr) at katG315 has been reported to be the most frequent and is associated with transmission and multidrug resistance. Rapid detection of this mutation could therefore improve the choice of an adequate anti-tuberculosis regimen, the epidemiological monitoring of INH resistance and, possibly, the tracking of transmission of resistant strains. An in house reverse hybridisation assay was designed in our laboratory and evaluated with 180 isolates of M. tuberculosis. It could successfully characterise the katG315 mutation in 100 percent of the samples as compared to DNA sequencing. The test is efficient and is a promising alternative for the rapid identification of INH resistance in regions with a high prevalence of katG315 mutants.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/genetics , Catalase/genetics , Drug Resistance, Bacterial/genetics , Isoniazid/pharmacology , Mycobacterium tuberculosis , Mutation/genetics , Colorimetry/methods , DNA, Bacterial/analysis , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Nucleic Acid Hybridization , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL